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Executive Summary 

A new software package undergoing development through joint efforts by the Missile Defense 
Branch at Aberdeen Proving Ground, Maryland, and the Communications Electronic Warfare 
Branch at Fort Monmouth, New Jersey, of the U.S. Army Research Laboratory’s (ARL) 
Survivability/Lethality Analysis Directorate models and predicts the viability of communications 
links between moving nodes.  This connectivity software model consists of six modules:  the 
Deployment Module, the Propagation Module, the Antenna Module, the Noise Module, the Link 
Budget Module, and the Connectivity Confidence Interval Module.   

The first module to see development is the Deployment Module, which concerns itself with the 
location of communications platforms as a function of time.  This module queries the user for 
locations of waypoints in terms of latitude, longitude, and altitude.  This will be obtained from 
time and an elevation database such as the Digital Terrain Elevation Data (DTED) (1) for ground 
communications platforms or nodes.  The module will then calculate the location of the moving 
nodes for times between the waypoint times called “snapshot times”.  For each snapshot time, 
the location of every single platform will be calculated and recorded.  We can then model the 
node motion by playing back the interpolated snapshot positions much like rapidly projecting 
successive frames from a motion picture. 

At this juncture in time, the code’s developers face an important choice.  When we make the 
interpolated calculations for the platforms’ locations at the snapshot times, should the Deployment 
Module use the World Geodetic System 1984 (WGS84) model of the earth, which assumes that it 
is shaped like an oblate spheroid (OS) (2), or model of the earth as a perfect sphere (PS) (3)?  The 
argument favoring the OS is that it is a model which has been extensively verified and is widely 
used (2).  Software packages, such as Forward and Inverse (4), which are needed to do the inter-
polation calculations, are available free to the general public, thus bypassing the need to develop 
significant portions of the Development Module.  Alternatively, using the PS as the basis for cal-
culating the interpolation points would result in faster computations because the model is much 
simpler.  The snapshot locations will be accurate enough for the connectivity calculations done by 
the subsequent modules. 

Knowledge of just how accurate the PS-based calculations would be and how much computation 
time is saved would allow the developers to make an informed choice as to which model to use.  
Therefore, software based on the PS was written to calculate interpolated latitudes and longitudes.  
The accuracy and computation time were then compared to Forward and Inverse calculated 
longitudes and latitudes. 

Three versions of Forward and Inverse were used.  The first used executable C++ programs that 
required a batch program and auxiliary programs to maintain data format.  The second used 
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Matrix Laboratory (MATLAB)1 scripts, which required an additional script to oversee the 
process and control the data format.  The third involved modifying FORTRAN (Formula 
Translator) source codes to combine Forward and Inverse into one program and altering some 
aspects of the program to make it more computationally efficient.  The programs were run on 
three computation platforms:  a 1-year-old Dell2 laptop, a 3-year-old Dell desktop, and an 8-year-
old ProGen3 laptop. 

For waypoint separation of 647 km, a maximum difference between the PS- and OS-based 
calculations was 29 meters.  When the waypoint separation was reduced to 100 km, the maximum 
difference was reduced to 1 meter.  Past link budget studies (5) show that waypoint separations of 
less than 100 km are typical.  The best computation time for the OS-based software was the 
modified FORTRAN Forward and Inverse program, which took 1.5 times longer than the PS-
based software on the Dell laptop.  The longest computing time was the unmodified C++ 
programs, which took 30 times longer to compute than the PS-based program on the ProGen 
laptop.   

Because of the much greater computation time required for the WGS84-based OS codes and the 
more-than-adequate accuracy of the PS-based calculations, it is recommended that the developers 
use the PS as the basis for calculation of the interpolated snapshot points.  In this study, only two 
waypoints were considered.  In a genuine deployment, many waypoints for many platforms will be 
modeled, greatly increasing the computation time.  For practical problems, the accuracy of the PS 
will be within 1 meter, greatly exceeding the Levels 1 and 2 DTED standards (1).  Modification of 
the OS WGS84 FORTRAN programs to make them compute faster took 2.5 times longer than it 
did to produce the PS-based program. 

 

                                                 
1MATLAB is a registered trademark of The MathWorks. 
2Dell is a registered trademark of the Dell Computer Corporation.   
3ProGen is a registered trademark of Reflex Nutrition Ltd. 
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1. Introduction 

A new software package undergoing development through joint efforts by the Missile Defense 
Branch at Aberdeen Proving Ground, Maryland, and the Communications Electronic Warfare 
branch at Fort Monmouth, New Jersey, of the U.S. Army Research Laboratory’s (ARL) Sur-
vivability/Lethality Analysis Directorate models and predicts the viability of communications links 
between moving nodes.  The connectivity software is divided into six modules as illustrated in the 
hypothetical graphical user interface in figure 1.   

 

Figure 1.  Modules of the connectivity software. 

The Deployment Module models the locations and movements of the wireless network nodes.  The 
Propagation Module contains data to calculate the attenuation of radio signals between the nodes 
attributable to atmospheric and terrain effects.  The Antenna Module contains data concerning 
modeled antennae, including the gain, loss, and electromagnetic (EM) radiation pattern.  The Noise 
Module computes receiver noise attributable to internal and external contributions, including EM 
noise which includes cosmic background radiation, the earth’s thermal radiation, and jamming.  
The Link Budget Module takes the data from the previous modules and calculates the wireless link 
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mean signal-to-noise (S/N) ratio for each communications node.  The Connectivity Confidence 
Interval (CCI) Module selects the appropriate standard deviation of the path loss associated with 
each link and computes the probability of successful signal reception.  The model manages the six 
modules as they perform the calculations necessary to do the wireless network simulation.  

1.1 Background 

The Deployment Module is the first module undergoing development.  This module tracks the 
motion of communications nodes.  The approach is to allow the user to establish the location  
of a set of waypoints for each moving communication node in terms of latitude, longitude, and 
elevation.  (Elevation is read from a database in the case of ground nodes.)  The user also specifies 
waypoint arrival and departure information for each platform. 

At certain times, the viability of the links between the moving nodes will have to be calculated.  
To do the calculation, the location of the platforms must be known.  Invariably, these snapshot 
times will not correspond to the times when the platforms will be at their waypoints.  Therefore, it 
will be necessary to interpolate the platforms’ latitude, longitude, and elevation, based on a given 
velocity, and altitude profile.  The number of interpolations may be few or could number into the 
hundreds for a single platform.  Multiple platforms are expected to be portrayed; therefore, the 
time and memory space required for calculations become important. 

The important question facing the developers is “which model of the earth should be used to 
calculate the interpolated points?”  Computational time and geometric fidelity must both be 
considered.  Basically, two geometric models are available:  the World Geodetic System 1984 
(WGS84) oblate spheroid (OS) model (6) and the perfect sphere (PS) model (3).  The WGS84 OS 
is shaped like a flattened sphere; a cross section taken through a meridian line renders an ellipse 
with a minor radius of 6,356,752.3142 m (measured from a pole to the earth’s center point), and  
a major a radius of 6,378,137 m (measured from the equator to the earth’s center point) (7).  
Alternatively, a cross section of the perfect sphere through either a meridian or the equator 
produces a circle.  Figure 2 shows the cross section of a constant meridian OS superimposed of  
the cross section of a PS.  The radius of the circle in the figure is chosen so that the PS surface  
area will match the WGS84 OS surface area (8).  This was done to show the difference in shape 
between the PS and the WGS84 OS.  The OS in the figure is much more elliptical, flattened, and 
eccentric than a WGS84 OS to exaggerate the comparison with the sphere.  In reality, the 
flattening of the earth is not discernible to the naked eye.   

1.2 Purpose 

If the developers chose to use the WGS84 OS model as the basis for interpolating the platform 
locations, much computation time would be required.  For example, calculating the exact 
circumference of an ellipse requires the summation of an infinite series (9).  To be practical, the 
series would have to be truncated, requiring many terms for every single snapshot point, and an 
algorithm would have to be developed to determine how accurate the sum must be and how many 
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terms need to be summed.  An interpolation on the surface of an OS requires doing only a portion 
of a curve that will likely be more complicated than an ellipse.  

 

Figure 2.  Cross sections of an OS (in red) and a PS (in blue).  (The  
flattening of the OS in the figure is greatly exaggerated compared  
to a WGS84 OS to show the difference between the OS and PS  
earth models.) 

Alternatively, an iterative process may be used (10), but it too would require many iterations per 
snapshot point and an algorithm to decide what is accurate enough and how many iterations are 
necessary.  A third alternative involves using programs such as Forward and Inverse (offered as 
FORTRAN, C++, and MATLAB [Matrix Laboratory] listings and executable files by the 
National Geodetic Survey [NGS]) (11), which would still require multitudes of calculations for 
every snapshot point. 

If the developers choose to use a PS as the interpolation basis, the calculation would be much 
faster; each snapshot point requires the calculation of only a single expression as opposed to a 
many-termed or multi-stepped iteration.  Furthermore, a member of the development team has 
used the PS model in a previous analytical effort (5).  Should any difficulty encountered in the 
development of modules beyond the Deployment Module be traced to that module, a resident 
expert in the PS model would be available as a problem-solving resource. 
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Therefore, if the OS is used, the location of the interpolated points will be more accurate, but if 
the PS is used, less computation time will be required.  This is an important consideration in that 
the Deployment Module will be the first executed, so the less computation time used, the better.  
The importance of saving computation time becomes apparent in that the interpolated latitude/ 
longitude/altitude points must be computed many times for a multitude of waypoints, for a 
multitude of platforms. 

Invariably, this discussion raises four specific questions on the part of the developers deciding 
between the OS and PS models:  1) How much more computation time would be required to use 
the WGS84 model?  2) How much accuracy is lost if the PS model is used?  3) How much time 
would it take to do the coding to accommodate the OS and PS model?  4) is there a particular 
problem that either of these models can solve which the other cannot?  The purpose of performing 
this study is to perform a typical interpolation problem with the use of the two models so that 
quantitative data will be available to support the developers’ choice of an earth model. 

1.3 Scope 

The comparison between the models was done at median sea level.  The extant two-dimensional 
(2-D) versions of Forward and Inverse were used to allow for compatibility with the older C++ 
version of the codes.  Furthermore, no C++ version of Forward and Inverse in three dimensions  
(3-D) is available at this time.  These programs concern locations on the surface of an OS.  Newer 
versions of Forward and Inverse (FORTRAN source code) address the 3-D solutions, only as line-
of-sight or straight-line distances and sea-level distances, which is insufficient for modeling non-
sea-level plat-form motion.  Although the PS could address motion at any elevation, sea level was 
used to make the comparison consistent.  The earlier 2-D versions of Forward and Inverse compute 
great circle distances at sea level.  The 3-D versions also compute this distance, in addition to the 
line-of-sight distance for points that are higher than sea level.  

 

2. Methodology 

The process used is to calculate a set of interpolated points between two waypoints with both 
models.  Then, the time needed to write or modify the software to do the calculations, the com-
putation time needed for various computer platforms to do the computations, and the latitude/ 
longitude results calculated for the OS and PS models are compared.  Several sets of waypoints  
with various distances between them were considered for three latitudes.  The C++ version of 
Forward and Inverse can only calculate distances along the surface of an WGS84 OS, so only non-
elevated paths were compared.  The particular details of the methodology are enumerated next. 
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2.1 Process 

The process represented is shown in figure 3.  The assumptions that govern the motion are that the 
platform 1) moves at sea level, 2) moves along the shortest path between the two points according 
to the model (PS or OS) used to calculate the interpolated points, and 3) starts at the first point at 0 
meters per second and accelerates at a constant rate until it reaches the second point traveling at 20 
meters per second (or 48 mph).  The final assumption is that the position between the two points is 
calculated every 10 seconds.  Comparison is then made of the resultant interpolated points 
predicted by the OS and PS models. 

 

Figure 3.  Platform movement between two waypoints with snapshot times. 

2.2 Procedure 

It is assumed that the path traveled by the platform is a great circle (12) as distinct from a rhumb 
line or loxodrome (13).  A rhumb line crosses all meridians at the same angle, whereas a great 
circle crosses different meridians with different angles.  Although used extensively in navigation, a 
rhumb line is not (unlike a great circle) the shortest distance between two points.  Although nearly 
indistinct from a great circle for short distances near the equator, a rhumb line’s spiral curvature 
becomes evident for long distances near the poles.  Alternatively, a great circle traces the shortest 
path between two points for all latitudes and all distances. 

The procedure involved the method used to incorporate the OS model and the PS model to do the 
calculations.  The input file for all processes (way.dat which is listed in appendix A) is an ASCII 
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(American Standard Code for Information Interchange) file containing the latitudes, longitudes, 
elevations, and times for the two waypoints.  Four processes took the information from way.dat 
and calculated the interpolated points. 

2.2.1 FORTRAN Code Using the PS 

The first involves using the PS model and is illustrated in figure 4.  Test.exe is a FORTRAN 
program written by the author to calculate the interpolated points from the points in way.dat.  It 
works by using the fact that a great circle is the shortest path on the surface of the sphere between 
the two points.  

 

Figure 4.  Procedure for calculating the interpolated points with the PS model. 

The equation for a great circle on a sphere is 

 tan φ = tan φmax cos (θ – θ0) (1) 

where φ is the latitude, θ is the longitude, and φmax and θ0 are respectively the latitude and 
longitude of the point on the great circle which is farthest north from the equator.  By knowing 
two points on the great circle (φ1, θ1) and (φ2, θ2), one can calculate φmax and θ0. 

Substituting each set of points into equation 1 to get two equations, then eliminating φmax, the 
value for θ0 is found to be 

 θ0 = Arc tan [(tan φ1 cos θ2 – tan φ2 cos θ1) / (tan φ2 sin θ1 – tan φ1 sin θ2)]. (2) 

By substituting (φ2, θ2) into equation 1 and using the value for θ0 obtained in equation 2, we find 
the value for φmax 

 φmax = Arc tan [tan φ2 / cos (θ2 – θ0)]. (3) 

φmax and θ0 are then used to transform the waypoints (φ1, θ1) and (φ2, θ2) to a primed coordinate 
system so that they are both on the primed equator: 

 θ1’ = Arc cos [cos (θ1 – θ0) cos φ1 / cos φmax] (4a) 

 θ2’ = Arc cos [cos (θ2 – θ0) cos φ2 / cos φmax] . (4b) 

Having read the times t2 and t1 corresponding to the waypoints from the input data file way.dat and 
using the fact that the waypoints are both on the primed equator, we calculate the arc acceleration 
α with this equation: 

 α = 2 (θ2’ – θ1’) / (t2 – t1)2. (5) 
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Since the interpolated times ti have already been selected as occurring once every 10 seconds, the 
corresponding primed interpolated latitude θi’ is calculated with 

 θi’ = θ1’ + α (ti – t1)2 / 2. (6) 

The primed interpolated longitude is then converted back to the original coordinate system longi-
tude and latitude with φmax and θ0 once again: 

 φi = Arc sin (cos θi’ sin φmax), (7a) 

 θi = Arc cos (cos θi’ cos φmax / cos φi’) + θ0. (7b) 

The result, 6,473 interpolated sets of latitudes, longitudes, elevations (kept at 0 for this study), and 
times, were then stored in a second ASCII file called “snap.out”.  The time for computation was 
then measured with a stopwatch as indicated by the clock in figure 4. 

We calculated the arrival time of the platform (64717.85189 seconds) in figure 3 by assuming that 
1) the platforms starts from rest at time t = 0, 2) the platform accelerates at a constant rate a, and  
3) the arrival velocity is 20 meters per second.  The distance between the points was calculated 
from their latitudes and longitudes given in figure 3.  Two equations of motion, D = a t2/ 2 and 
vfinal = a t, were then used to solve for the acceleration a and the time t.  

2.2.2 C++ Codes Using the OS 

The second procedure used two executable C++ files, Forward and Inverse, both available from 
the U.S. Army Topographic Engineering Center (TEC) since November 1995 (14).  Forward 
calculates the latitude and longitude at sea level, given the starting point latitude and longitude, a 
bearing, and a sea-level distance.  Inverse calculates the bearing and distance between two points, 
given their latitudes and longitudes.  Both offer the user a choice of several models of the earth; we 
chose the WGS84 OS. 

These particular executable files originated as C++ programs.  The way they were used is outlined 
in figure 5.  We begin with the same ASCII file (way.dat) that the PS FORTRAN file test.exe used.  
Although the waypoint latitudes and longitudes were contained in way.dat, the information had to 
be rendered in a format that Inverse.exe could understand.  The short FORTRAN file Test1.exe 
took the waypoint latitude and longitude information from wat.dat and wrote it to a file in a format 
that Inverse.exe understood called “way1.crd”.  Inverse.exe then calculated the distance and bearing 
between the two waypoints and recorded them in a file called “way1.out”.  Sections of these files 
are included in appendices A through F.  

The process used was to take the beginning and ending times, ti and tf from way.dat, the distance d 
from way1.out, and use them to calculate the acceleration constant “a” via the equation 

 a = 2 d / (tf – t1)2. (8) 
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Figure 5.  How the C++ executable files forward.exe and inverse.exe were used to do the interpolation. 

Then, using the fact that the interpolation time ti occurred every 10 seconds, we calculated the 
acceleration a interpolated distances di with the formula 

 di = a (ti – t1)2 / 2. (9) 

The bearing was read from way1.out, with the interpolated distances, and the latitude and longi-
tude of the first waypoint and stored in the file snap1.crd.  Forward.exe then used the first way-
point longitude, latitude, bearing, and interpolated distances to calculate 6,473 interpolated points 
and store the information in a file called “snap1.out”.  Test3.exe then read snap1.out and put the 
interpolated latitudes, longitudes, elevations (0 meters for this study) and times in a file called 
“snap2.out”.  This last step ensured that the format of the interpolated points matched the format of 
the file snap.out, calculated with the PS model.  All the executables were run with the use of a batch 
file called interp.bat.  The calculation time was measured with a stopwatch.  For readers wishing to 
know more details of the format of the ASCII files described in figure 5, excerpts of the files 
way.dat, way1.crd, way1.out, snap1.crd, snap1.out, and snap2.out are included in the appendices. 

2.2.3 MATLAB Scripts Using the OS 

A similar process that employed downloaded MATLAB scripts of Forward (15) and Inverse (16) 
based on the OS WGS84 model were also used.  Figure 6 shows the process.  It was necessary  
for the authors to construct an additional script for flow control and to produce the output file 
path_conta.txt in a format identical to snap.out and snap2.out.  Then forward was run once to get 
the forward bearing and the distance between the waypoints.  Using the azimuth, we re-calculated 
the distance to correspond to the interpolated time under constant acceleration, and we calculated 
the latitude and longitude by calling Inverse repeatedly.  Additional scripts placed the data in the 
output file path_conta.txt and ensured that the data in path_conta.txt data had a format identical to 
snap.out and snap2.out.  This operation was timed with MATLAB timing routines and was also 
timed with a stopwatch. 
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Figure 6.  The process used in calculating interpolated latitude and longitude points via downloaded  
Forward and Inverse MATLAB scripts. 

2.2.4 FORTRAN Program Using the OS 

NGS provides FORTRAN listings for Forward and Inverse (17).  Rather than use the programs 
intact, the approach this time was to modify the listings and splice the two programs together to 
form one executable file, as shown in figure 7.  Additionally, the “do” loops for repeatedly using 
Inverse were chosen so as to define the bearing only once, and the number of output was reduced 
so as to minimize the computation time needed to calculate the latitudes and longitudes.  The 
program was also modified to calculate the distance, with an assumed constant acceleration.  The 
two listings were combined and then compiled to form a single executable test4.exe.  The results 
were placed in the file snap3.out.  The timing for this operation was also done with a stopwatch.   

 

Figure 7.  The FORTRAN listings were downloaded for Forward and Inverse and combined to form a single 
executable program, test4.exe. 

2.3 Platforms 

The interpolation programs were also ran on a variety of platforms (see table 1).  They consisted of 
an 8-year-old ProGen laptop running Windows4 98, A 3-year-old desktop running Windows 2000, 
and a 1-year-old Dell laptop running Windows XP.  Only the Desktop ran MATLAB, while all 
three machines ran the FORTRAN and C++-based programs.  The reason why three platforms 
were used was to establish the effect that processor speed and model difference (OS and PS) had 
on computation time. 

                                                 
4Windows is a trademark of the Microsoft Corporation. 
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Table 1.  The three different computing platforms used. 

Computer 
Manufacturer 

Age (years) Operating System RAM Processor 

ProGen 8 Windows 98 64 MB Pentium II 
Della 3 Windows 2000 1 GB 2.2-GHz single 
Dell 1 Windows XP 1 GB T2400 @ 1.83 GHz 

aMATLAB platform 
 
 

3. Analysis 

The analysis consisted of tracking the running time of the calculations done with the algorithms, 
based on the OS and PS models.  It also consisted of recording the time required to code the 
algorithms.  The bulk of the analysis consisted of comparing the spatial difference between the 
interpolated longitudes and latitudes and considering a special problem where the waypoints are 
on the equator but nearly 180 degrees apart.  

3.1 Analysis for the Spatial Difference Between the OS- and PS-based Algorithms 

We begin with a short derivation of the equations used for the analysis.  Figure 8 shows the 
superposition of a latitude/longitude coordinate system with a rectilinear coordinate system; φ is 
the latitude, which varies from -90 to 90 degrees.  The designation “north latitude” would indicate 
a positive value, while “south latitude” indicates a negative value; θ is the longitude, varying from 
-180 to + 180 degrees.  “East” corresponds to positive latitude, while “West” connotes negative 
latitudes.  R is the distance from the earth’s center and is the sum of the mean sea level and the 
elevation.  R is always positive and can have a value between zero and infinity. 

The superimposition of a 3-D rectilinear coordinate system on the latitude and longitude system 
aids the calculation of distance.  The x axis starts at the earth’s center point and passes through the 
point where the prime meridian (0 degrees longitude) and equator (0 degrees latitude) intersect.  
Likewise, the y axis starts at the center point but goes through the point at the intersection of the 
equator (0 degrees latitude) and 90 degrees east longitude.  The z axis begins at the earth’s center 
as well but passes through the north pole (90 degrees latitude). 

To convert from the latitude/longitude coordinate system to the rectilinear system involves 
employing simple geometric relationships.  In the vertical right triangle, the side opposite the 
latitude angle φ in figure 8 is the z coordinate.   
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Figure 8.  The latitude-longitude coordinate system superimposed  
on the rectilinear coordinate system. 

Expressed in terms of the latitude-longitude system, this becomes 

 z = R sin φ. (10) 

The side adjacent to the latitude angle φ becomes the hypotenuse for the two right triangles in the 
x-y plane shown in figure 1, with a value of R cos φ.  The side opposite the longitude angle θ is 
the y coordinate, which in terms of R, φ, and θ is  

 y = R cos φ sin θ. (11) 

The side adjacent to the latitude angle φ is the x coordinate, rendered 

 x = R cos φ cos θ. (12) 

Figure 9 shows the platform paths that were computed based on the two models.  At a given time, t, 
the location of the moving platform will be computed at two different points.  We wish to compute 
the distance between them.  Figure 10 shows a cross-sectional wedge showing the straight line 
distance Δ and the angle δ between the points computed by the OS and PS models at time t.  As is 
evident by figure 10, the straight line distance Δ is related to the great circle distance by way of the 
angle δ by sin (δ/2) = Δ/(2 R).  The great circle distance is R δ.  We suspect that the distance 
between the points is on the order of hundreds of kilometers.  The radius of the earth is about 6300 
kilometers.  Since the radius of the earth is about 1000 times larger than Δ or R δ, δ becomes very 
small, so we may employ the well-known asymptotic relationship sin (δ/2) ≈ δ/2 = Δ/(2 R) or put 
another way, the great circle distance δ R = Δ, the straight line distance.  If we find the straight line 
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distance, we have found the great circle distance.  Using data presented from the Results section, 
we will justify this assumption. 

 

Figure 9.  The platform paths and the distance between the points calculated at time t. 

 

Figure 10.  Distance and angle between points at time t predicted by the OS and PS models. 

If we know the rectilinear coordinates of the two points, the distance between them is calculated 
with the sum of the squares of the differences of the x, y, and z coordinates: 

 Δ2 = (xOS – xPS)2 + (yOS – yPS )2 + (zOS – zPS)2. (13) 

We do not have the rectilinear coordinates, but we do have the latitudes, longitudes, and the radii 
of the OS and PS.  With equations 10, 11, and 12, 13 becomes 

 

( )
( )
( )

22
OS OS OS PS PS OS

2
OS OS OS PS PS OS

2
OS OS PS PS

R cos cos R cos cos

R cos sin R cos sin

R sin R sin .

φ θ φ θ

φ θ φ θ

φ φ

Δ = − +

− +

−

 (14) 

Next, the squares for each term are evaluated and listed, rendering equation 14 as 
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 (15) 

Applying the well-known trigonometric identity sin2 α + cos2 α = 1 (18, p 433) twice, it is easy to 
show that cos2 φ cos2 θ + cos2 φ sin2 θ + sin2 φ = 1.  This reduces six terms of equation 15 to two.  
With some re-grouping of the remaining three terms, equation 15 becomes   

( )2 2 2
OS PS OS PS OS PS OS PS OS PS OS PSR R 2R R cos cos cos cos sin sin sin sinφ φ θ θ θ θ φ φΔ = + − + +⎡ ⎤⎣ ⎦   (16) 

Next, we employ another well-known trigonometric identity:  cos (A + B) = cos A cos B - sin A 
sin B (18, p 434).  Application of this identity further simplifies equation 16 to read 

 ( )2 2 2
OS PS OS PS OS PS OS PS OS PSR R 2R R cos cos cos sin sinφ φ θ θ φ φΔ = + − − +⎡ ⎤⎣ ⎦ . (17) 

From figure 10, we reasoned that if Δ is small compared to the ROS, or RPS, then δ must be small, 
so that sin δ ≈ δ (19).  Since θOS - θPS is the longitudinal component of δ, it must be smaller than δ.  
Then the angle θOS - θPS must also be a very small angle.  Expanding the term cos A into a Taylor 
series, if A is a small angle, we may limit the expansion to the first two terms and ignore the rest of 
the series with little loss in accuracy, so that cos A ≈ 1 – A2/2 (18, p 736).  Applied to equation 17,  

 2Δ  ≈ ( )2
OS PS OS PS2 2

OS PS OS PS OS PS OS PS

cos cos
R R 2R R cos cos sin sin .

2
φ φ θ θ

φ φ φ φ
⎡ ⎤−

+ − − +⎢ ⎥
⎢ ⎥⎣ ⎦

(18) 

Again, using the identity cos (A + B) = cos A cos B - sin A sin B, equation 18 becomes 

 2Δ  ≈ ( ) ( )2
OS PS OS PS2 2

OS PS OS PS OS PS

cos cos
R R 2R R cos .

2
φ φ θ θ

φ φ
⎡ ⎤−

+ − − −⎢ ⎥
⎢ ⎥⎣ ⎦

 (19) 

If δ is small, then the vertical component φOS - φPS must be smaller.  Re-applying the relationship 
cos A ≈ 1 – A2/2, equation 19 simplifies a bit more:  

 2Δ  ≈ ( ) ( )2 2
OS PS OS PS OS PS2 2

OS PS OS PS

cos cos
R R 2R R 1 .

2 2
φ φ φ φ θ θ⎡ ⎤− −

+ − − −⎢ ⎥
⎢ ⎥⎣ ⎦

 (20) 

The polar radius and the equatorial radius of the earth differ by 0.3%.  Since the PS radius is 
between the equatorial and polar radius of the OS, it follows that ROS and RPS differ by even less 
(see figure 2).  The OS radius at the latitude for which this study was performed (39 degrees north 
latitude), the OS and PS radius must be very nearly equal, so that ROS ≈ RPS.  Applying this to 
equation 20, we reach the equation with which the difference calculation was performed: 
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 ( ) ( )2 22 2 2
OS OS OS PS OS PSR cos φ θ θ φ φ⎡ ⎤Δ = − + −⎣ ⎦ . (21) 

After the codes calculated the latitude and longitude corresponding to platform location at a 
particular interpolated time, the distance between the results predicted by the PS and OS models 
were calculated and then plotted via equation 21.  Δ is the difference in meters between the two 
interpolations; φOS and θOS are the latitude and longitude reported for the OS model, and φPS and 
θPS are the PS latitude and longitude.  For equation 21 to report the correct results, φOS, φPS, θOS, 
and θPS must be in radians. 

The cross section of the WGS84 OS model of the earth is an ellipse (21).  Thus, ROS becomes a 
function of the latitude φOS.  Therefore, the exact equation for the radius must be the equation for 
an ellipse in polar coordinates, namely, 

 
2 2

OS OS
2 2 2

OS

cos sin1
R A B

φ φ
= +  (22) 

where ROS is the radius of the earth at latitude φOS, A is the equatorial radius in meters (6378137), 
and B is the polar radius in meters (6356752.3142) (7). 

The difference between the OS and PS calculated points of figure 9 may be extended to a flat 
surface.  Because the distance Δ is small compared to the earth’s radius, the area around the path 
difference line may be approximated as a flat surface, as has been done with figure 11.  To obtain 
the distance between points Δ, we employ the Pythagorean theorem, h2 + v2 = Δ2 (20).  The latitude 
distance, v, is simply the earth’s radius at the point times when the angle latitude changes, or ROS 
(φOS - φPS).  The longitude distance h is also the earth’s radius times the longitude change, but it 
must be multiplied by the cosine of the latitude.  That is because the distance for a given longitude 
difference increases as the latitude decreases.  (Consult figure 8 and equations 11 and 12.)  There-
fore, h = ROS (θOS - θPS) cos φOS.  Making the substitutions for h and v in the Pythagorean theorem, 
we arrive at an expression for the distance Δ: 

 ( ) ( )2 22 2 2
OS OS OS PS OS PSR cos φ θ θ φ φ⎡ ⎤Δ = − + −⎣ ⎦ . (23) 

This expression is identical to equation 21, giving us confidence that this formula correctly calcu-
lates Δ2.    
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Figure 11.  Figure 9 extended to a flat surface. 

3.2 Analysis for the Special Problem 

The greatest difference between the interpolated longitude and latitude points predicted by the OS 
and PS models should be for the special case where the two waypoints are on the equator and very 
nearly 180 degrees apart.  This situation is depicted in figure 12.  The two waypoints on the equa-
tor are where the line y = y0 and z = 0 intersects the OS.  This line through the OS connecting the 
two waypoints on the OS surface is parallel to the x axis a consistent perpendicular distance y0 
from the x axis, and lies in the xy plane.  It is also perpendicular to the y axis and skew to the z 
axis.  Because the OS is flattened at the poles, the arc of shortest distance on the OS which 
connects the points travels closer to the pole than to the equator.  To see just how close, the 
situation should be viewed in cross section of the yz plane, as shown in figure 13.  

The cross section taken through the poles is an ellipse (21) with equation 24 (22): 

 1 = y2 / a2 + z2 / c2 (24) 

where a is the equatorial radius and c is the polar radius.  The shortest path line on the surface of 
the OS intersects the cross-sectional ellipse at a point fairly near the pole.  The straight line con-
necting the waypoints intersects the y axis at the point (0,y0,0).  These two ponts are separated by  
a distance D.  The square of the distance D is represented by the equation  

 D2 = (y - y0)2 + z2,  (25) 

which can be rendered in terms of a single variable after we solve the elliptical cross-sectional 
equation (equation 24) for z2 and substitute into equation 25: 

 D2 = (y – y0)2 + c2 (1 - y2 / a2). (26) 
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Figure 12.  The shortest path on the OS connecting two equatorial waypoints nearly  

opposite each other goes closer to the poles than to the equator. 

 
Figure 13.  The xy cross section of the OS of figure 12. 

It follows that the shortest path line along the surface of the OS should be the line closest to the 
straight line intersecting the waypoints.  Therefore, the point on the ellipse where the shortest mean 
sea level path intersects the cross section should be a point on the ellipse that is closest to (0, y0, 0).  
This point should have a value for y so that the distance squared D2 is minimized.  The value for y 
is easily found if we take the y derivative of equation 26, and set it to zero.  The answer is  

 y = y0 / (1 – c2 / a2 ). (27) 

The greatest value y can have is the equatorial radius a, so substituting that value in equation 27, 
and solving for y0 renders the maximum value possible for y0.  
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 y0 = a (1 – c2 / a2 ). (28) 

For two points on the equator, the line connecting them on the surface of an OS does NOT follow 
the equator if they are within 2 y0 of being 180 degrees opposite each other.  If they are closer than 
that, the closest path lies on the equator.  Plugging in the WGS84 values for the earth, for a = 
6,378,137.0 meters, and c = 6,356,752.314 245 m (6), we find y0 = 42,697.67 meters.   

Therefore, if two waypoints on the equator are between 180 and 179.2329 degrees apart in 
longitude, the shortest path connecting them is NOT along the equator.  Any software calculating 
the interpolated points for this special circumstance should provide interpolated points that are not 
on the equator.  Note that by symmetry, the shortest mean sea level path on an OS also may pass 
by the southern pole as well as the northern pole.  Conversely, the path connecting two points on 
the equator, which are less than 179.2329 degrees apart, has a shortest mean sea level path on the 
equator, and software calculating the interpolated points should provide points that are on the 
equator.  

 

4. Results 

The results are presented in three sections.  The first section compares the spatial differences for 
the interpolated points calculated with the use of algorithms based on the WGS84 OS model and 
the PS model.  The second section compares the computation time required for the various pieces 
of software on the available platforms and the time required for the coders to write the code.  The 
final section is devoted to the results calculated for two waypoints on the equator but nearly 
opposite each other, as outlined in section 3.2. 

4.1 Spatial Differences Between the OS- and PS-Based Algorithms 

The results for the calculations made between the C++ OS software, the FORTRAN OS software, 
the MATLAB OS software, and the FORTRAN PS software are shown in figure 14.  Even though 
only one line is shown in the graph, the four plots are so close to each other that they appear as a 
single line.  Note that the bearings of all the plots change with distance, consistent with a shortest 
path sea level route.   

At a resolution allowing visibility of the entire path, all four processes agree.  The small separation 
between the PS FORTRAN calculations and the three sets of OS calculations can be seen when the 
vertical axis is expanded by a factor of 80 and the horizontal scale by a factor of 160.  Figure 15 
shows the results.  The portion of the graph that displays the greatest difference between the three 
OS-based software calculations and the PS-based calculation is displayed in this rather limited 
window.  The three WGS84-based calculations appear identical, even with this very high level of 
magnification because the same base algorithms were used for the three OS-based codes.  
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Figure 14.  Results for interpolated points as calculated with the PS, the C++ version, the MATLAB  

version, and the FORTRAN version of Forward and Inverse.  (The graph shows only one line 
because the differences between them are too small to be seen at this scale.) 

 
Figure 15.  Difference between the spherically based calculations and the WGS84-based calculations  

with the horizontal axis of figure 14 multiplied by 160 and the vertical axis by 80.  (A window  
is placed over those parts of curve where the differences are greatest.) 
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Some slight difference between the three OS-based calculations becomes more apparent if the 
horizontal axis is expanded by an additional factor of 8-1/3 and the vertical axis by an additional 
factor of 1-2/3.  This has been done in figure 16, where a slight difference between the MATLAB 
and FORTRAN versions of Forward and Inverse begins to emerge in the upper right corner and 
center of the graph. 

To report the difference between the various OS- and PS-based codes in figures 14, 15, and 16, it is 
not enough to give the separation distance between the curves.  Instead, the distance between each 
snapshot location point for identical interpolation times must be made on a point-by-point basis.  
Thus, the differences presented in figures 17 and 18 are shown as a function of time.  Therefore, a 
comparison between the differences of the latitudes and longitudes as predicted with the C++ and 
FORTRAN versions of Forward and Inverse with WGS84 parameters using equations 21 and 22 
reveals that the maximum difference is very close to 1 meter.  The comparison is shown in 
figure 17.  The jagged nature of the graph suggests that the difference between the C++ and 
FORTRAN programs is attributable to rounding error. 

 

Figure 16.  Slight difference between the WGS84-based MATLAB and FORTRAN begins to reveal  
itself after extreme magnification of figure 15. 
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Figure 17.  Slight difference between the WGS84-based MATLAB and FORTRAN.  (Graph’s  
jaggedness suggests that small difference is attributable to rounding error.) 

 

Figure 18.  Difference between results of the OS C++ computation and PS FORTRAN  
computation.  (Differences reported are time based.) 
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The differences between the C++ WGS84 OS and the FORTRAN PS results are much greater and 
are shown in figure 18.  The smoothness of the overall envelope of the curve suggests that the 
difference between the two (calculated via equations 21 and 22) is attributable to the genuine 
difference in algorithm.  Rounding plays some, although a greatly reduced, role in the difference of 
figure 18, as seen by the slight saw-tooth jaggedness superimposed on the smooth waveform. 

The maximum difference between paths shown in figure 18 is less than 30 meters.  The ratio of 30 
meters to the earth’s radius (6.3 x 106 meters) is a very, very small number⎯about 4.8 x 10-6.  
Thus, the assumption (that the distance between paths is small compared to the earth’s radius) used 
to derive equations 21 and 23 is justified.  

The 29-meter difference between the OS and PS model is far greater than the 1-meter difference 
between the OS FORTRAN and C++ models, both of which employ an algorithm based on the 
WGS84 OS model.  Because the difference between the PS- and OS-based software is large 
compared to the difference between the WGS84-based OS models and because our purpose is to 
compare the OS and PS models, our inclination is to regard all the differences between the various 
OS models as zero. 

The distance between the two waypoints represented by figure 18 is roughly 647 km.  More 
comparison runs were made comparing the difference between the PS- and OS-based algorithms  
at distances of 400 km, 200 km, 100 km, 80 km, 60 km, 40 km, 30 km, 20 km, and 10 km.  The 
greatest distance between two points and the average distance (the distance difference totaled for 
all points and divided by the number of points) between the interpolated longitudes and latitudes 
are shown in figure 19. 

The curve in figure 19 shows that the longer the path, the greater the average and maximum 
difference between the OS and PS algorithms.  The parabolic shape of the plot indicates that the 
difference between the OS and PS algorithms as a fraction of the distance between the waypoints 
also increases with distance.  This is expected since the shorter the path along the OS, the closer it 
comes to being the arc of a circle. 

The difference should be reduced if the comparison of the plot in figure 19 is made at a higher 
latitude.  Consider that the cross section of an OS is an ellipse; the change in radius along the arc 
length of an ellipse is zero at the points where the major and minor radii intersect the ellipse.  A 
circle (the cross section of a perfect sphere) has no change in radius along the path.  So the closer  
to the poles and equator the path, the more it should resemble a circle and the less the difference 
between the latitudes and longitudes predicted between the OS and PS models.  Figure 20 confirms 
our suspicions for the very high latitude of 80 degrees:  the maximum of 16 meters is somewhat 
over half the 600-meter path length difference of 26 meters at the latitude of 40 degrees. 
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Figure 19.  Maximum and average difference between the OS and PS algorithm 

as a function of distance at 40 degrees north latitude. 

 
Figure 20.  The maximum and average difference between the OS and PS algorithm 

as a function of distance at 80 degrees north latitude. 



 

25 

At the equator, the difference should be even smaller because unlike the pole, the difference in 
curvature is not near zero but exactly equal to zero for movement in the direction of the equator.  
As we move along a line of constant latitude, the change in radius is very nearly zero at the equa-
tor, so the region close to the equator on an OS is most like that of a PS.  The graph of figure 21 
shows the least amount of difference between the sets of interpolated latitudes and longitudes 
calculated according to the OS and PS models.  For a waypoint distance of 600 km, the maximum 
difference is a mere 3 meters. 

 

Figure 21.  The maximum and average difference between the OS and PS algorithm as  
function of distance at 0 degrees north latitude. 

4.2 Computation Time 

The computation times required for the various software packages on the available platforms are 
shown in table 2.  The times reported in this table were the times necessary to compute the data 
shown in the graphs in figures 15 to 19.  Interpolated points (6,473) were calculated via the three 
platforms:  a Dell desktop, a Dell laptop, and a ProGen laptop.  All the platforms calculated the 
interpolated latitudes and longitudes using the two OS-based software packages:  the C++ pro-
grams Forward and Inverse, and the FORTRAN programs Forward and Inverse.  All the platforms 
calculated the PS-based FORTRAN program.  Only the Dell desktop had the MATLAB software 
installed, so it was the only platform that did the computations with the downloaded OS MATLAB 
versions of Forward and Inverse.   
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Table 2.  Computation times for OS- and PS-based algorithms on three platforms. 

Forward/Inverse (OS) Model 
 
Computer  

C++ Batch File MATLAB FORTRAN 
Sphere (PS) 
FORTRAN 

ProGen 49 -- 3.39 1.5 
Dell Desktop 6 3.7 0.94 0.61 
Dell Laptop 6 -- 0.91 <0.5 

Times are given in seconds.  The entry under “Sphere (PS) FORTRAN” and “Dell Laptop” was too short to obtain an 
accurate measurement. 

 

As expected, the ProGen laptop, the oldest platform, reported the slowest speeds.  The C++ batch 
file took 49 seconds, the FORTRAN versions of Forward and Inverse took 3.39 seconds, while the 
PS-based FORTRAN code needed only 1.5 seconds.  The next newest machine, the Dell desktop, 
took 6 seconds to run the C++ batch file, 3.7 seconds to run the MATLAB scripts, 0.94 second to 
run the OS FORTRAN Forward and Inverse files, and only 0.61 second to run the PS FORTRAN 
file.  The newest computer, the Dell laptop, took the least amount of time to run the programs:  6 
seconds for the C++ batch file, 0.91 second for the FORTRAN Forward and Inverse files, and less 
than 0.5 second to run the PS-based FORTRAN program.  The time to run the PS-based program 
(as were all the times) was measured with a stopwatch.  The PS-based FORTRAN program ran so 
quickly, there was not quite enough time to start and then stop the stopwatch, so the upper boun-
dary time is reported.  Consistency in the ranking of the running time was also required by each 
program.  On all the platforms, the C++ batch file took the longest, the MATLAB scripts were the 
next quickest, then the OS FORTRAN version of Forward and Inverse, while the FORTRAN 
version of the PS-based program ran the fastest.  

One point to be noted in the time comparison is that three calculating modes are in use.  The modes 
are a batch file for executable Windows/DOS programs; interpreted files inside a MATLAB 
environment run as an additional operation and execution of a single program.  It may be possible 
to accelerate the run times for the C++ batch files if we perform the same type of recompilation as 
was done for FORTRAN source code.  The MATLAB codes may also be combined and could be 
exported as a separate executable program.  These may be useful for ensuing investigations. 

The time required to write/modify the programs to calculate the interpolated points is presented in 
table 3.  The MATLAB modification of Forward and Inverse took the least amount of time (1/4 of 
1 day) because the scripts for Forward and Inverse were imported from the internet.  The manipu-
lating and modifying scripts were also MATLAB scripts, so the MATLAB version was the easiest 
to assemble.  The C++ batch file had to use executable versions of Forward and Inverse, which 
made it necessary to write a comprehensive, albeit simple, manipulative batch file.  The batch file 
was the next longest to write at 1 day.  The PS FORTRAN code had to be written from scratch.  
Even though no scripts were available to make any of the computations, the PS model was simple 
enough that it required only 2 days to write and de-bug the program.  Using the FORTRAN 
listings of Forward and Inverse required the most time:  5 days.  This was because attempts were 
made to modify the programs so that they would run efficiently.  Extraneous output lines were 
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“commented out” of the listing; the “do” loop controlling the interpolation calculations was placed 
so that the entered data were used only once.  Forward and Inverse were modified and compiled to 
make one large program, but the process that likely took most of the time was the addition of 
comment lines.  This was done so that the coders could keep track of the modifications made.  
Because Forward and Inverse were extensive, extensive comment lines had to be included in the 
revised program.  They were so extensive that it took a week to make the necessary alterations. 

Table 3.  The time necessary to write/modify codes so that they were able to calculate needed interpolation points. 

Forward/Inverse (OS)  
C++ Batch File MATLAB FORTRAN 

Sphere (PS) 
FORTRAN 

Coding Time (days) 1 0.25 5 2 
 

4.3 Special Problem 

The attempts to calculate the interpolated points for the special problem (two points on the equator 
separated by more than 179.2329 degrees but less than 180 degrees) are summarized in table 4.  
All the software packages calculated a path that was on the equator.  Only the C++ batch file froze 
and refused to perform any computations.  The remaining packages calculated interpolated points 
along the equator.  Further investigation of the FORTRAN source codes and the vintage of the 
C++ code indicated a potential source for the problem with the C++ code.  Comments in the 
FORTRAN code showed several improvements, and “divide-by-zero” traps were introduced in 
versions dating back to 1998.  One of the reasons cited for including these traps was to avoid 
program failure at near-antipodal conditions.  The C++ code was available in 1995 and may not 
have included the antipodal trap. 

Table 4.  Summary of the results for special problem outlined in section 3.2 

Forward/Inverse (OS)  
C++ Batch File MATLAB FORTRAN 

Sphere (PS) 
FORTRAN 

Results No computation On equator On equator On equator 
 
 

5. Conclusions 

Conclusions fall into four categories.  The categories are computation time for the OS versus the 
PS models, accuracy for the PS model compared to the WGS84-based OS model, time needed to 
modify and write the various OS- and PS-based codes, and how well the OS- and PS-based 
programs managed the special problem outlined in section 3.2.  The conclusions are presented 
for each category. 
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5.1 Computation Time 

For any platform and for any software package used, the time needed to calculate the interpolated 
latitudes and longitudes for the WGS84-based models took anywhere from 1.5 times as long (as on 
the Dell laptop) to 30 times as long (as on the ProGen laptop) as for the PS model.  The software 
package that came closest to matching the PS FORTRAN code was the FORTRAN listings of 
Forward and Inverse provided by the NGS (11) modified and re-compiled into one code in such a 
way as to minimize the computation time.  

Although the OS model only took 1.5 times longer to do the calculations on the Dell laptop and  
the Dell desktop computers using the modified NGS codes than with the PS FORTRAN code, we 
believe that the more realistic comparison between these codes is the result from the ProGen laptop 
computer (see table 2).  Attempting to accurately measure times of less than 1 second is very 
difficult with a stopwatch; making the measurements on the newer machines is somewhat less 
reliable because the programs took less than 1 second to run.  The results on the older ProGen 
laptop were easier to measure because the programs took longer than 1 second to run on this 
machine.  Assuming that the results for processing speed can be linearly extracted to the newer, 
faster machines and that the inconsistency of measurement increases with the machine speed, it is 
not unreasonable to realize that the true ratio of the OS processing time to the PS processing time 
could well be closer to 2.25.   

5.2 Latitude and Longitude Accuracy 

The greatest difference between any of the OS models and the PS model in interpolating a set of 
latitudes and longitudes was 29 meters.  This was for the 647-km separation of waypoints at about 
40 degrees north latitude (see figure 19).  One way to characterize these numbers is to note that the 
ratio of the disagreement distance to the waypoint separation distance is less than 0.0044%—very 
small indeed.   

Another way is to see it in terms of EM propagation time:  we will be concerned with a time 
resolution of approximately 1 second for the connectivity software.  Yet an EM wave can travel  
29 meters in less than 97 nanoseconds—instantaneous compared to 1 second.  For practical 
applications, this is ignorable. 

Another way to characterize the difference is in the additional free space attenuation between 
stations that are 29 meters farther separated than we assume.  If we have a sending and receiving 
platform separated by 10 km of free space, then the free space distance attenuation will increase by 
0.025 dB, which is very small compared to most phenomena that degrade communication signals.  
Typical of these is insertion loss, which is typically 1 dB (5). 

5.3 Code Writing and Code Modification Times 

Table 3 outlines the time needed to write or adapt the codes needed to do the comparison for this 
study.  The shortest time needed was to use the MATLAB scripts:  only one quarter of a day.  The 
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next shortest time was for use of the C++ executable programs Forward and Inverse and to write a 
few additional programs to modify the format of the input and output files so as to put them in a 
useful format that Forward could read:  one day.  The next was to write the FORTRAN program 
test.exe based on the PS model:  two days.  By far, the longest time required was to consolidate the 
FORTRAN listings for Forward and Inverse:  five days.  The long time was needed to examine 
and understand the programs and to make non-harmful modifications to minimize the computation 
time.  This was also because of the far more complex math needed to calculate the WGS84 OS 
model than with the PS model.  Note that the FORTRAN program based on the PS model was the 
only code that was not based on the WGS84 OS model.  For the OS models, the tendency was that 
the more time spent on producing the code, the faster it ran. 

5.4 The Special Problem of Section 3.2  

As table 4 shows, none of the codes calculated the problem correctly.  The MATLAB and 
FORTRAN OS codes gave the same mistaken output as the PS FORTRAN code, while the C++ 
code simply did not run.  It would be possible to have the Deployment Module (when faced with 
two waypoints that are on the equator and separated by 180 to 179.2329 degrees of latitude) fix a 
phantom waypoint between the two equatorial waypoints (as outlined in section 3.2) and then use 
any of the processes outlined to interpolate latitude and longitude points from the first waypoint to 
the phantom waypoint, then to the second waypoint.  

 

6. Recommendations 

We recommend that the PS model be used to interpolate the latitudes and longitudes for the snap-
shot points.  The primary reason is that the computation time is much shorter.  By the data in 
table 2, it takes anywhere from 1.8 to 32 times longer to generate the same number of interpolated 
points, depending on the process used to make the calculations with the WGS84 OS model.  (For 
the reasons outlined in section 5.1, we believe that the lower boundary is closer to 2.25 times.)  
This study calculated the interpolation points for one platform between two waypoints.  Performing 
a genuine link study will require doing many waypoints for many platforms so that the impact of 
the longer time will be magnified.  The Deployment Module is the first of six modules to be 
written, so we should strive to make the first module as computationally efficient as possible to 
minimize the impact of inefficiencies that appear in any of the remaining modules. 

The strongest argument for using the WGS84 OS-based software is that it is more accurate than the 
PS model.  The discourse of section 5.2 shows that for waypoints 647 km apart, the PS model will 
be accurate enough.  Yet doing past link budgets for moving platforms, waypoint separations are 
likely to be less than 100 km apart (5).  The comparison of the PS to the WGS84 OS for 100 km 
shows a maximum disagreement of only 1 meter (see figure 19) for the most inaccurate latitude 
surveyed in the present work.  Lower and higher latitudes agree even more (see figures 20 and 21).  
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The DTED (from which the Deployment Module will be drawing its elevation data) Level 1 
specifies a linear error of less than 30 meters and a horizontal accuracy of less than 50 meters at 
least 90% of the time (1).  Level 2 is even more restrictive than level 1, requiring a linear error of 
less than 18 meters, and a horizontal error of less than 23 meters at least 90% of the time (1).  For 
waypoint distances of 100 km or less, the PS has surpassed the Level 1 and Level 2 DTED 
specifications. 

Other arguments in favor of using the WGS84 OS models point to the coding time saved in using 
software that has already been written.  Table 3 indicates that the time needed to apply the codes 
Forward and Inverse for MATLAB (0.25 day), and C++ (1 day) was indeed less than the time 
needed to write the PS FORTRAN code (2 days).  However, these two codes required 6 and 10 
times longer to run on the Dell desktop (see table 2), more than outweighing the coding time 
advantage.  Modifying the FORTRAN OS program to cause it to run faster increased the coding 
time dramatically (5 days).  The WGS84-based FORTRAN code still took about twice as long as 
the PS FORTRAN code to do the calculation.  Further modification of the WGS84-based code to 
improve the computation time would require even more coding time, which has already exceeded 
the coding time for the PS FORTRAN code.  Investing more coding to improve calculation time 
for the WGS84-based computer programs is a losing proposition.  

Finally, if any difficulty should arise in the development of the next modules, which requires 
detailed knowledge of the interpolation process used in the Deployment Module, there is no one in 
the group who has a detailed understanding of how to calculate great circle snapshot points using 
the OS model.  In contrast, a team member wrote the PS-based FORTRAN code for this study and 
has used the PS model in past link budget analyses (5).  
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Appendix A.  Listing of the Contents of the File Way.dat. 

 Lat.(d m s)      Long.(d m s) Altitude(m)               Time(s) 
 039 52 36.40  048 47 54.24 00000.00000000000 000000.0000000000 
 039 09 09.72  041 18 37.08 00000.00000000000 064717.8518900000 
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Appendix B.  Listing of the Contents of the File Way1.crd. 

COORD_FMT        DMS 
LON_FMT          360 
ACCURACY         .01_SECOND 
ELLIPSOID        WE 
LATITUDE_FROM    39 52 36.40 N 
LONGITUDE_FROM   48 47 54.24 E 
LATITUDE_TO      39  9  9.72 N 
LONGITUDE_TO     41 18 37.08 E 
CONVERT 
; 
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Appendix C.  Listing of the Contents of the File Way1.out. 

;     COORD_FMT        DMS 
;     LON_FMT          360 
;     ACCURACY         .01_SECOND 
;     ELLIPSOID        WE 
 
 
ELLIPSOID : WGS 84                         
INPUT  
=====================================================================
========== 
FROM LATITUDE         FROM LONGITUDE        TO LATITUDE          TO LONGITUDE  
=====================================================================
========== 
39 52 36.40 N         048 47 54.24 E        39 09 9.72 N          041 18 37.08 E  
 
 
OUTPUT  
=====================================================================
========== 
FORWARD AZIMUTH       BACK AZIMUTH          DISTANCE  
=====================================================================
========== 
265 16 41.91          080 30 34.76          648742                   
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Appendix D.  Partial Listing of the Contents of the File Snap1.crd. 

COORD_FMT  DMS 
LON_FMT    360 
ACCURACY   .01_SECOND 
ELLIPSOID  WE 
LATITUDE   39 52 36.40 N 
LONGITUDE   48 47 54.24 E 
AZIMUTH    265 16 41.91 
DISTANCE          0 
CONVERT 
; 
COORD_FMT  DMS 
LON_FMT    360 
ACCURACY   .01_SECOND 
ELLIPSOID  WE 
LATITUDE   39 52 36.40 N 
LONGITUDE   48 47 54.24 E 
AZIMUTH    265 16 41.91 
DISTANCE          0 
CONVERT 
; 
COORD_FMT  DMS 
LON_FMT    360 
ACCURACY   .01_SECOND 
ELLIPSOID  WE 
LATITUDE   39 52 36.40 N 
LONGITUDE   48 47 54.24 E 
AZIMUTH    265 16 41.91 
DISTANCE          0 
CONVERT 
; 
COORD_FMT  DMS 
LON_FMT    360 
ACCURACY   .01_SECOND 
ELLIPSOID  WE 
LATITUDE   39 52 36.40 N 
LONGITUDE   48 47 54.24 E 
AZIMUTH    265 16 41.91 
DISTANCE          0 
CONVERT 
; 
. 
. 
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Appendix E.  Partial Listing of the Contents of the File Snap1.out. 

;     COORD_FMT  DMS 
;     LON_FMT    360 
;     ACCURACY   .01_SECOND 
;     ELLIPSOID  WE 
;     DISTANCE          0 
 
 
ELLIPSOID : WGS 84                         
=====================================================================
========== 
STATION        LATITUDE          LONGITUDE         AZIMUTH          DISTANCE 
=====================================================================
========== 
FROM STATION   39 52 36.40 N     048 47 54.24 E    265 16 41.91     0               
TO STATION     39 52 36.40 N     048 47 54.24 E    085 16 41.91             
 
;     ; 
;     COORD_FMT  DMS 
;     LON_FMT    360 
;     ACCURACY   .01_SECOND 
;     ELLIPSOID  WE 
;     DISTANCE          0 
 
 
ELLIPSOID : WGS 84                         
=====================================================================
========== 
STATION        LATITUDE          LONGITUDE         AZIMUTH          DISTANCE 
=====================================================================
========== 
FROM STATION   39 52 36.40 N     048 47 54.24 E    265 16 41.91     0               
TO STATION     39 52 36.40 N     048 47 54.24 E    085 16 41.91             
 
;     ; 
. 
. 
. 
. 
. 
. 
. 
. 
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Appendix F.  Partial Listing of the Contents of the File Snap2.out. 

Lat.(d m s)   Long.(d m s)     Altitude(m)       Time(s)                
  39  9  9.72   41 18 37.08      .00000000000       .0000000000 
  39  9  9.72   41 18 37.08      .00000000000     10.0000000000 
  39  9  9.72   41 18 37.08      .00000000000     20.0000000000 
  39  9  9.72   41 18 37.08      .00000000000     30.0000000000 
  39  9  9.72   41 18 37.08      .00000000000     40.0000000000 
  39  9  9.72   41 18 37.08      .00000000000     50.0000000000 
  39  9  9.72   41 18 37.08      .00000000000     60.0000000000 
  39  9  9.72   41 18 37.08      .00000000000     70.0000000000 
  39  9  9.73   41 18 37.12      .00000000000     80.0000000000 
  39  9  9.73   41 18 37.12      .00000000000     90.0000000000 
  39  9  9.73   41 18 37.12      .00000000000    100.0000000000 
  39  9  9.73   41 18 37.12      .00000000000    110.0000000000 
  39  9  9.73   41 18 37.12      .00000000000    120.0000000000 
  39  9  9.73   41 18 37.16      .00000000000    130.0000000000 
  39  9  9.73   41 18 37.16      .00000000000    140.0000000000 
  39  9  9.73   41 18 37.16      .00000000000    150.0000000000 
  39  9  9.74   41 18 37.20      .00000000000    160.0000000000 
  39  9  9.74   41 18 37.20      .00000000000    170.0000000000 
  39  9  9.74   41 18 37.20      .00000000000    180.0000000000 
  39  9  9.74   41 18 37.24      .00000000000    190.0000000000 
  39  9  9.74   41 18 37.24      .00000000000    200.0000000000 
  39  9  9.74   41 18 37.24      .00000000000    210.0000000000 
  39  9  9.75   41 18 37.29      .00000000000    220.0000000000 
  39  9  9.75   41 18 37.29      .00000000000    230.0000000000 
  39  9  9.75   41 18 37.33      .00000000000    240.0000000000 
  39  9  9.75   41 18 37.33      .00000000000    250.0000000000 
  39  9  9.76   41 18 37.37      .00000000000    260.0000000000 
  39  9  9.76   41 18 37.37      .00000000000    270.0000000000 
  39  9  9.76   41 18 37.41      .00000000000    280.0000000000 
  39  9  9.76   41 18 37.41      .00000000000    290.0000000000 
  39  9  9.77   41 18 37.45      .00000000000    300.0000000000 
  39  9  9.77   41 18 37.49      .00000000000    310.0000000000 
  39  9  9.77   41 18 37.49      .00000000000    320.0000000000 
  39  9  9.78   41 18 37.53      .00000000000    330.0000000000 
  39  9  9.78   41 18 37.57      .00000000000    340.0000000000 
  39  9  9.78   41 18 37.57      .00000000000    350.0000000000 
  39  9  9.79   41 18 37.61      .00000000000    360.0000000000 
  39  9  9.79   41 18 37.66      .00000000000    370.0000000000 
  39  9  9.79   41 18 37.66      .00000000000    380.0000000000 
  39  9  9.80   41 18 37.70      .00000000000    390.0000000000 
. 
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Acronyms 

2-D Two dimensional 

3-D Three dimensional 

APG  Aberdeen Proving Ground 

ARL  Army Research Laboratory 

ASCII  American Standard Code for Information Interchange 

DTED Digital Terrain Elevation Data 

EM electromagnetic 

EW  electromagnetic warfare 

FORTRAN Formula Translator 

IEPD  Information & Electronic Protection Division 

MATLAB Matrix Laboratory 

NGS National Geodetic Survey 

OS oblate spheroid 

PS perfect sphere 

SLAD Survivability/Lethality Analysis Directorate 

S/N signal to noise (ratio) 

WGS84 World Geodetic System 1984 

TEC  Topographic Engineering Center  
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